3.39 \(\int \frac {(e x)^m (a+b x^2) (A+B x^2)}{(c+d x^2)^3} \, dx\)

Optimal. Leaf size=208 \[ \frac {(e x)^{m+1} \, _2F_1\left (1,\frac {m+1}{2};\frac {m+3}{2};-\frac {d x^2}{c}\right ) (a d (1-m) (A d (3-m)+B c (m+1))+b c (m+1) (A d (1-m)+B c (m+3)))}{8 c^3 d^2 e (m+1)}+\frac {(e x)^{m+1} (a d (A d (3-m)-B (c-c m))+b c (A d (m+1)-B c (m+3)))}{8 c^2 d^2 e \left (c+d x^2\right )}-\frac {\left (A+B x^2\right ) (e x)^{m+1} (b c-a d)}{4 c d e \left (c+d x^2\right )^2} \]

[Out]

-1/4*(-a*d+b*c)*(e*x)^(1+m)*(B*x^2+A)/c/d/e/(d*x^2+c)^2+1/8*(b*c*(A*d*(1+m)-B*c*(3+m))+a*d*(A*d*(3-m)-B*(-c*m+
c)))*(e*x)^(1+m)/c^2/d^2/e/(d*x^2+c)+1/8*(a*d*(1-m)*(A*d*(3-m)+B*c*(1+m))+b*c*(1+m)*(A*d*(1-m)+B*c*(3+m)))*(e*
x)^(1+m)*hypergeom([1, 1/2+1/2*m],[3/2+1/2*m],-d*x^2/c)/c^3/d^2/e/(1+m)

________________________________________________________________________________________

Rubi [A]  time = 0.30, antiderivative size = 208, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {577, 457, 364} \[ \frac {(e x)^{m+1} \, _2F_1\left (1,\frac {m+1}{2};\frac {m+3}{2};-\frac {d x^2}{c}\right ) (a d (1-m) (A d (3-m)+B c (m+1))+b c (m+1) (A d (1-m)+B c (m+3)))}{8 c^3 d^2 e (m+1)}+\frac {(e x)^{m+1} (a d (A d (3-m)-B (c-c m))+b c (A d (m+1)-B c (m+3)))}{8 c^2 d^2 e \left (c+d x^2\right )}-\frac {\left (A+B x^2\right ) (e x)^{m+1} (b c-a d)}{4 c d e \left (c+d x^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[((e*x)^m*(a + b*x^2)*(A + B*x^2))/(c + d*x^2)^3,x]

[Out]

-((b*c - a*d)*(e*x)^(1 + m)*(A + B*x^2))/(4*c*d*e*(c + d*x^2)^2) + ((b*c*(A*d*(1 + m) - B*c*(3 + m)) + a*d*(A*
d*(3 - m) - B*(c - c*m)))*(e*x)^(1 + m))/(8*c^2*d^2*e*(c + d*x^2)) + ((a*d*(1 - m)*(A*d*(3 - m) + B*c*(1 + m))
 + b*c*(1 + m)*(A*d*(1 - m) + B*c*(3 + m)))*(e*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((d*x^2)
/c)])/(8*c^3*d^2*e*(1 + m))

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 457

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d
)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*b*e*n*(p + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*b
*n*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] &
& LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] &&
 LeQ[-1, m, -(n*(p + 1))]))

Rule 577

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> -Simp[((b*e - a*f)*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*b*g*n*(p + 1)), x] + Dist[
1/(a*b*n*(p + 1)), Int[(g*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + (b*e - a*f)*(m
+ 1)) + d*(b*e*n*(p + 1) + (b*e - a*f)*(m + n*q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] &&
 IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] &&  !(EqQ[q, 1] && SimplerQ[b*c - a*d, b*e - a*f])

Rubi steps

\begin {align*} \int \frac {(e x)^m \left (a+b x^2\right ) \left (A+B x^2\right )}{\left (c+d x^2\right )^3} \, dx &=-\frac {(b c-a d) (e x)^{1+m} \left (A+B x^2\right )}{4 c d e \left (c+d x^2\right )^2}-\frac {\int \frac {(e x)^m \left (-A (a d (3-m)+b c (1+m))-B (a d (1-m)+b c (3+m)) x^2\right )}{\left (c+d x^2\right )^2} \, dx}{4 c d}\\ &=-\frac {(b c-a d) (e x)^{1+m} \left (A+B x^2\right )}{4 c d e \left (c+d x^2\right )^2}+\frac {(b c (A d (1+m)-B c (3+m))+a d (A d (3-m)-B (c-c m))) (e x)^{1+m}}{8 c^2 d^2 e \left (c+d x^2\right )}+\frac {(a d (1-m) (A d (3-m)+B c (1+m))+b c (1+m) (A d (1-m)+B c (3+m))) \int \frac {(e x)^m}{c+d x^2} \, dx}{8 c^2 d^2}\\ &=-\frac {(b c-a d) (e x)^{1+m} \left (A+B x^2\right )}{4 c d e \left (c+d x^2\right )^2}+\frac {(b c (A d (1+m)-B c (3+m))+a d (A d (3-m)-B (c-c m))) (e x)^{1+m}}{8 c^2 d^2 e \left (c+d x^2\right )}+\frac {(a d (1-m) (A d (3-m)+B c (1+m))+b c (1+m) (A d (1-m)+B c (3+m))) (e x)^{1+m} \, _2F_1\left (1,\frac {1+m}{2};\frac {3+m}{2};-\frac {d x^2}{c}\right )}{8 c^3 d^2 e (1+m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 133, normalized size = 0.64 \[ \frac {x (e x)^m \left (c \, _2F_1\left (2,\frac {m+1}{2};\frac {m+3}{2};-\frac {d x^2}{c}\right ) (a B d+A b d-2 b B c)+(b c-a d) (B c-A d) \, _2F_1\left (3,\frac {m+1}{2};\frac {m+3}{2};-\frac {d x^2}{c}\right )+b B c^2 \, _2F_1\left (1,\frac {m+1}{2};\frac {m+3}{2};-\frac {d x^2}{c}\right )\right )}{c^3 d^2 (m+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[((e*x)^m*(a + b*x^2)*(A + B*x^2))/(c + d*x^2)^3,x]

[Out]

(x*(e*x)^m*(b*B*c^2*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((d*x^2)/c)] + c*(-2*b*B*c + A*b*d + a*B*d)*Hy
pergeometric2F1[2, (1 + m)/2, (3 + m)/2, -((d*x^2)/c)] + (b*c - a*d)*(B*c - A*d)*Hypergeometric2F1[3, (1 + m)/
2, (3 + m)/2, -((d*x^2)/c)]))/(c^3*d^2*(1 + m))

________________________________________________________________________________________

fricas [F]  time = 0.95, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (B b x^{4} + {\left (B a + A b\right )} x^{2} + A a\right )} \left (e x\right )^{m}}{d^{3} x^{6} + 3 \, c d^{2} x^{4} + 3 \, c^{2} d x^{2} + c^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(b*x^2+a)*(B*x^2+A)/(d*x^2+c)^3,x, algorithm="fricas")

[Out]

integral((B*b*x^4 + (B*a + A*b)*x^2 + A*a)*(e*x)^m/(d^3*x^6 + 3*c*d^2*x^4 + 3*c^2*d*x^2 + c^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B x^{2} + A\right )} {\left (b x^{2} + a\right )} \left (e x\right )^{m}}{{\left (d x^{2} + c\right )}^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(b*x^2+a)*(B*x^2+A)/(d*x^2+c)^3,x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*(b*x^2 + a)*(e*x)^m/(d*x^2 + c)^3, x)

________________________________________________________________________________________

maple [F]  time = 0.07, size = 0, normalized size = 0.00 \[ \int \frac {\left (b \,x^{2}+a \right ) \left (B \,x^{2}+A \right ) \left (e x \right )^{m}}{\left (d \,x^{2}+c \right )^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^m*(b*x^2+a)*(B*x^2+A)/(d*x^2+c)^3,x)

[Out]

int((e*x)^m*(b*x^2+a)*(B*x^2+A)/(d*x^2+c)^3,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B x^{2} + A\right )} {\left (b x^{2} + a\right )} \left (e x\right )^{m}}{{\left (d x^{2} + c\right )}^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(b*x^2+a)*(B*x^2+A)/(d*x^2+c)^3,x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*(b*x^2 + a)*(e*x)^m/(d*x^2 + c)^3, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (B\,x^2+A\right )\,{\left (e\,x\right )}^m\,\left (b\,x^2+a\right )}{{\left (d\,x^2+c\right )}^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*x^2)*(e*x)^m*(a + b*x^2))/(c + d*x^2)^3,x)

[Out]

int(((A + B*x^2)*(e*x)^m*(a + b*x^2))/(c + d*x^2)^3, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**m*(b*x**2+a)*(B*x**2+A)/(d*x**2+c)**3,x)

[Out]

Timed out

________________________________________________________________________________________